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The intersection of two minimal surfaces

An interesting tool in the study of several problems in minimal surface
theory consists of answering this question:

Question

How is the intersection of two minimal surfaces S1 and S2 ?

A seminal work on this type of problems was:

Tibor Rado. On the Problem of Plateau. Chelsea Publishing
Co., New York, N. Y., 1951. (Photographic reproduction of a
book which first appeared as Band 2, Heft 2 in the series
Ergebnisse der Mathematik and ihrer Grenzgebiete, Springer,
Berlin, 1933.)
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The intersection of two minimal surfaces

Theorem (Rado, 1933)

Let D1 a bounded convex domain in the (x1, x2)-plane, and let C1 = ∂D1

be its boundary. Let ϕk(x1, x2), k = 3, . . . , n be arbitrary continuous
functions on C1. Then there exists a solution

u(x1, x2) = (u3(x1, x2), . . . , un(x1, x2))

of the minimal surface equation (1) in D1 with uk |C1 = ϕk , k = 3, . . . , n .

(
1 + ‖ux2‖

2
)
ux1x1 − 2 (ux1 · ux2) ux1x2 +

(
1 + ‖ux1‖

2
)
ux2x2 = 0. (1)
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The intersection of two minimal surfaces

� If we are working in R3, and p ∈ S1 ∩ S2 is a point so that the normal
vectors are not parallel, then S1 ∩ S2 is an analytic curve around p. We say
that p is a point of contact of order 0.

If ν1(p) = ±ν2(p), then, up to a rigid motion that p = (0, 0, 0) and
TpS1 = TpS2 ≡ {z = 0}. If we write S1 = graph(u1) and S2 = graph(u2),
where u1 and u2 are local solutions of

(1 + u2x )uyy − 2uxuyuxy + (1 + u2y )uxx = 0 (2)

If u1 ≡ u2, then (by analytic continuation) S1 ≡ S2.
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The intersection of two minimal surfaces

If u1 6= u2, then

(u1 − u2)(x , y) =
∑
i≥n

h(i)(x , y).

where h(i) is an homogeneous harmonic polynomial of degree i . Then we
say that S1 and S2 have a contact of order n − 1 at p.

Theorem

If S1 and S2 have a contact of order n − 1 at p, then S1 ∩ S2 consists of n
analytic curves meeting at p forming an angle of π/n.

An easy proof can be found in §437 of

Nitsche, Johannes C. C. Lectures on minimal surfaces. Vol. 1.
Cambridge University Press, Cambridge, 1989
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The intersection of two minimal surfaces

Figure: Costa minimal torus.
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The intersection of two minimal surfaces

Figure: Costa minimal torus.

Francisco Mart́ın (Granada) Morse-Radó theory May 3-12, 2022. 7 / 71



The intersection of two minimal surfaces
A nice application is an easy proof of this classical theorem:

Theorem (Bernstein, 1905)

Let S be a minimal surface which is an entire graph, then S is a plane.

Figure: Scherk doubly periodic surface.
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Rado-type functions

Definition (Rado-type function)

A function F : M → R on a surface M is called a Rado-type function if
F is continuous on M and smooth on M \ ∂M, and if for each interior
critical point p, either

1 F |M is constant on a neighborhood of p, or

2 In suitable polar coordinates for M at p, F has the form

F (r , θ) = F (p) + c rn sin n θ + o(rn) (3)

for some integer n ≥ 2 and some c 6= 0.

The multiplicity of the critical point p is defined to be 0 in Case (1) and
(n − 1) in Case (2).
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Rado-type functions

The following theorem shows how Rado-type functions arise naturally.

Theorem (of Structure)

Let Ω be a smooth Riemannian 3-manifold and F : Ω→ R be a smooth
function with nowhere vanishing gradient such that the level sets of F are
minimal surfaces. If M is a minimal surface in Ω, then F |M is a Rado-type
function.

In the previous setting, for S1, S2 minimal surfaces in R3

F (x , y , z) = z − u2(x , y).

Then F |S1 is a Rado-type function.
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Proof of Structure Theorem

It suffices to consider the case when Ω ⊂ R3 with a metric g and
p = (0, 0, 0).
We may assume that F (0, 0, 0) = 0. By applying a diffeomorphism to F
and to the metric, we can assume that

F (x , y , z) = z .

Note that (near (0, 0, 0)), M is the graph of a function

u : B2(0, ε)→ R

with
u(0, 0) = 0 and Du(0, 0) = ~0.
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Proof of Structure Theorem

Now u and the 0 function are both solutions of the g-minimal
surface equation, so their difference u = u − 0 solves a second-order
linear elliptic equation:

aijDiju + biDiu + cu = 0 (4)

where aij , bi , and c are smooth functions of (x , y).
(See, for example, equation (10.22) and the subsequent displayed
formula in

.

Gilbarg, David; Trudinger, Neil S. Elliptic partial differential
equations of second order. Reprint of the 1998 edition. Classics
in Mathematics. Springer-Verlag, Berlin, 2001.

There, the derivation is for solutions of differential inequalities, but the
same proof works when equality holds.)
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Proof of Structure Theorem
By making a linear change of coordinates, we can assume that

aij(0, 0) = δij .

� If u(x , y) = o(|(x , y)|m) for all m, then u is identically 0 near the
origin by standard unique continuation theorems. You can see for instance
Theorem 1.1 and Corollary 1 in

Micallef, Mario J.; White, Brian. The structure of branch
points in minimal surfaces and in pseudoholomorphic curves.
Ann. of Math. (2) 141 (1995), no. 1, 35–85.

� Otherwise, from the Taylor series for u, we see that

u(x , y) = h(x , y) + o(|(x , y)|m)

for some m ≥ 2 and some nonzero homogeneous polynomial h of degree
m.
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Proof of Structure Theorem

Thus

aijDiju + biDiu + cu = aij(0, 0)Diju + (aij − aij(0, 0))Diju + biDiu + cu

= ∆u + (aij − aij(0, 0))Diju + biDiu + cu

= ∆h + o(rm−2),
(5)

where r = |(x , y)|. Now ∆h is a homogeneous polynomial of degree
m − 2, so by (4) and (5),

∆h = 0.

We are done, because we can use (x , y) as local coordinates on M, and for
(x , y , z) ∈ M,

F (x , y , z) = z = u(x , y).

Q.E.D.
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Maximum principle

The following is an immediate consequence of the definition of Rado
function:

Proposition (Maximum principle)

If a Rado-type function F on a connected surface is non-constant, then its
critical points are isolated, and F has no local maxima or minima.

Corollary

If F is a Rado-type function on M, and if J is a point or interval (possible
infinite) in R, then

d1(M ∩ F−1(J)) ≤ d1(M),

where di (Σ) := dimHi (Σ,Z2).
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Maximum principle

Proof.

Let C be a closed curve, not necessarily connected in M ∩ F−1(J), that is
homologically trivial (mod 2) in M.
Then C bounds a region R in M. The maximum and minimum of F on R
must occur on C , by the previous proposition.
Thus, R lies in M ∩ F−1(J) and therefore C is homologically trivial in
M ∩ F−1(J).
We have shown that the inclusion of M ∩ F−1(J) into M induces a
monomorphism of first homology. �
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Level curves of a Rado function

Theorem (Level curves)

Suppose that M is a surface with boundary and that F : M → R is a
Rado-type function that is smooth on M \ ∂M. Let t ∈ R and G be
M ∩ {F = t}. Suppose that G is compact and contains no closed loops
and that the number k of points in (∂M) ∩ {F = t} is finite. Then G is a
finite union of finite trees, and

2(c + m) ≤ k

where c is the number of connected components of G and m is the sum of
the multiplicities of the critical points of F on {F = t}.
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Level curves of a Rado function

Proof.

Let T be a connected component of G \ ∂M. Then T is a tree, and no
two ends of T go to the same point in ∂M. The number of ends of T is
2(m(T ) + 1), where m(T ) is the sum of the multiplicities of the
critical points in T .
If there were infinitely many such trees, then there would be two of them
T and T ′ with exactly the same endpoints on ∂M. But then T ∪ T ′

would contain a loop, a contradiction.
Thus G is a finite tree. As before, the number of ends is ≥ m + c and is
less than or equal to the number of points in (∂M) ∩ {F = t}. �

This theorem has an interesting and useful corollary.
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Level curves of a Rado function

Corollary

Suppose in the previous theorem that d1(M) <∞. Let G = M ∩ {F = t}.
Then (whether or not G contains loops) G is a finite network,

d1(G ) ≤ d1(M),

and
2(c + m) ≤ k + 2d1(G ).

Let S be the set consisting of interior critical points of F that lie on G
together with the points of (∂M) ∩ {F = t}. The statement that G is a
finite network is the statement that S is finite and the G \ S has finitely
many connected components. The components of G \ S are called edges
of G .
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Level curves of a Rado function
Proof.

By the corollary to the maximum principle, we know that d1(G ) ≤ d1(M).
We prove this corollary by induction on d1(G ). If d1(G ) = 0, this is the
previous theorem.
Thus suppose d1(G ) > 0. Then G contains a closed loop L. Let E be one
of the edges of G that lies in L, let p be a point in the E , and let M ′ and
G ′ be obtained from M and G by removing a small open ball around p.
Then

d0(G ′) = d0(G ),

d1(G ′) = d1(G )− 1,

and (∂M ′) ∩ {F = t} has exactly k + 2 points. Thus by induction, G ′ is a
finite network, and therefore G is a finite network. Also, by induction,

2(m + d0(G ′)) ≤ k + 2 + 2d1(G ′)⇒ 2(m + d0(G )) ≤ k + 2d1(G )

�
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Theorem (Rado, 1933)

Let D1 a bounded convex domain in the (x1, x2)-plane, and let C1 = ∂D1

be its boundary. Let ϕk(x1, x2), k = 3, . . . , n be arbitrary continuous
functions on C1. Then there exists a solution

u(x1, x2) = (u3(x1, x2), . . . , un(x1, x2))

of the minimal surface equation (1) in D1 with uk |C1 = ϕk , k = 3, . . . , n .
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Proof

The functions ϕk(x1, x2) define a Jordan curve Γ in Rn which projects
onto C1.
By Douglas’ theorem there exists a continuous map

x(u1, u2) : D → Rn

where D = {‖(u1, u2)‖ ≤ 1}, which defines a minimal surface in D and
takes C = ∂D homeomorphically onto Γ.
The the map

ψ(u1, u2) := (x1(u1, u2), x1(u1, u2))

is a continuous map of D which is harmonic in D and maps C
homeomorphically onto C1. By the convex hull property for minimal
surfaces

ψ(D) = D1
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Proof

Moreover Jac(ψ) never vanishes in D. Suppose not, then there exists a
point p ∈ D with Jac(ψ)(p) = 0. This means that there exists a, b ∈ R
such that

aDx1(p) + bDx2(p) = ~0.

Define F := a x1 + b x2, it is a Rado type function and G = {F = F (p)}
doesn’t contain any loop. Then

2(m + c) ≤ k .

But 2(m + c) ≥ 4 and k ≤ 2, a contradiction. Then ψ a local
diffeomorphism. As ψ|C is 1-to-1 onto C1, then ψ is a diffeomorphism. So,

uk := xk ◦ ψ−1, k = 3, . . . , n.

Q.E.D.
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Rado-type theorems

Theorem (Rado Alt)

Suppose that M is homeomorphic to a compact
manifold-with-boundary, that each component of M has nonempty
boundary, and that F : M → R is a Rado-type function. Suppose F is not
constant on any component of ∂M, and that F |∂M has n(F ) <∞ local
minima (in the sense described below). Then

N(F ) ≤ n(F )− χ(M)

χ(M) ≡ Euler characteristic of M
N(F ) ≡ number of critical of F in M (counted with multiplicity.)

Definition

Here, by a “local minimum” of F |∂M, we mean a set K consisting of a
point or a closed arc such that for some open arc U ⊂ ∂M containing K ,
F takes a constant value c on K and F > c at all points of U \ K .
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Proof of the theorem Rado Alt

Without loss of generality, we can assume that:
� (∂M) ∩ {F = t} is finite for every t.
If not, we define an equivalence relation on ∂M as follows:

equivalence relation

x ∼ y if F is constant on a connected subset of ∂M containing x and y .

Instead of working with M, we can work with M/ ∼.
By passing to a double cover, the result for non-orientable M follows
from the result for orientable M.
� Thus we assume M is orientable.
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Proof of the theorem Rado Alt

By elementary topology, the number of boundary components of M is
greater than or equal to the Euler characteristic, with equality if only if M
is a union of disks.
Since F |∂M has to have a local minimum on each component of ∂M, we
see that

n(F )− χ(M) ≥ 0,

with equality if and only M is a union of disks and F |∂M has exactly
one local minimum in each component of ∂M.
In this case, F has no critical points by the theorem about the level curves.
As F has only one minimum on each connected component of ∂M then
each component of {F = t} meets ∂M in two points (otherwise there
would be more than 2 local minima.)
Then the theorem says 2(c + m) ≤ k = 2c ⇒ m = 0, and this happens for
every t.
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Proof of the theorem Rado Alt

We prove the result by induction on n(F )− χ(M).
(It might seem more natural to do induction on the number N(F ) of
critical points. However, we do not know ahead of time that the number is
finite.)
Since n(F )− χ(M) ≥ 0, we are done if M has no critical points.
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Proof of the theorem Rado Alt

� Thus suppose F |M has an interior critical point p.
Let K be a compact subset of the interior of M such that p is in the
interior of K and such that K does not contain any other critical points of
F .
Let u : M → R be a smooth function that is supported in K and that is
equal to 1 in a neighborhood of U. For all t sufficiently close to 0, F + tu
will also be Rado-type function. Thus (by replacing F by a suitable F + tu)
we may assume that the level set of p contains no other critical points,
and that M ∩ {F = F (p)|} does not contain any other points in ∂M.
Recall that, by first sentence of proof, M ∩ {F = F (p)} does not contain
any arcs of ∂M.
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Proof of the theorem Rado Alt
Let m be the multiplicity of the critical point p. If U is a little
geodesic neighborhood of p, then U ∩ {F 6= F (p} is the union of 2(m + 1)
wedges that meet at p. In half of the wedges, F > F (p) and in the other
half, F < F (p).
In each wedge, we can take a little arc C with one endpoint at p such that
F is strictly monotonic along C . Since F is has no internal local
maximum/minimum⇒we can extend the arc, keeping F |C strictly
monotonic along it, until we reach a point in ∂M.
(For example, we can follow the gradient flow or minus the gradient flow,
perturbing slightly, if needed, to avoid critical points.)
Thus we get an arc with one endpoint at p and the other endpoint q in
∂M.

We can choose the arcs so that no two of them meet at the same point in
∂M, and so that none of the points are local maxima or local minima of
F |∂M.
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Proof of the theorem Rado Alt

� Let T be the union of those 2(m + 1) arcs.
Cut M along T to get a new manifold-with-boundary M ′. Note that p
becomes 2(m + 1) points in ∂M ′. None of those points is a local
minimum of F |∂M ′.
We wish to compare the Euler characteristics of M and of M ′. For this, it
is useful to consider a triangulation of M whose edges and vertices include
the edges of vertices of T . We use the corresponding triangulation of M ′.
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Proof of the theorem Rado Alt

Now each arc C in T from p to a point q ∈ ∂M becomes two arcs in M ′,
and the end point q becomes two points in M ′.
Thus the change in Euler characteristic caused by replacing C by two arcs
cancels the change caused by replacing q by two points.
Hence the change in Euler characteristic comes from replacing p in M by
2(m + 1) points in M ′:

χ(M ′) = χ(M)− 1 + 2(m + 1) = χ(M) + 2m + 1. (6)
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Proof of the theorem Rado Alt

If F (q) > F (p), then there are no local minima of F |∂M ′ on the two arcs
corresponding to C . However, if F (q) < F (p), then q will correspond to
two points in ∂M ′, and exactly one will be a local minimum of F |∂M ′.
Thus

n(F |M ′) = n(F |M) + m + 1. (7)

By (6) and (7),

n(F |M ′)− χ(M ′) = n(F |M)− χ(M)−m. (8)
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Proof of the theorem Rado Alt

In particular, n(F |M ′)− χ(M ′) < n(F |M)− χ(M), so by induction (recall
we are doing induction on n − χ) we can assume that the theorem is true
for M ′:

N(F |M ′) ≤ n(F |M ′)− χ(M ′). (9)

Also,
N(F ) = N(F |M ′) + m. (10)

Combining (8), (9), and (10), we see that N(F ) ≤ n(F |M)− χ(M).
Q.E.D
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Sharper Rado’s estimate

We can get a sharper estimate as follows.

Theorem (Sharper Rado’s estimate)

Let F and M be as above. Let σ(F ) be the number of local maxima of
F |∂M that are not local maxima of F plus the number of local
minimal of F |∂M that are not local minima of F . Then

N(F ) + σ(F ) ≤ n(F )− χ(M). (11)

Equivalently,
N(F ) ≤ c0(F )− c1(F )− χ(M),

where c0(F ) is the number of local minima of F |∂M that are also local
minima of F , and c1(F ) is the number of local maxima of F |∂M that are
not local maxima of F |M.
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Proof of sharper Rado’s estimate

� As in the proof of Theorem 5, we can assume that F is not constant
along any arc of ∂M.
Note that the number of local maxima of F |∂M is equal to the number of
local minima, from which it follows that

σ(F ) ≤ 2n(F ).

Thus σ(F ) is finite. We prove (11) by induction on σ(F ).
� If σ(F ) = 0, this is Theorem 5.
� Thus suppose σ(F ) > 0. The there is a point p ∈ ∂M such that

1 p is a local minimum of F |∂M but not of F , or

2 p is a local maximum of F |∂M but not of F .

Francisco Mart́ın (Granada) Morse-Radó theory May 3-12, 2022. 35 / 71



Proof of sharper Rado’s estimate

� Case 1: p is a local minimum of F |∂M but not of F Let C be an

arc in M with one end point at p and such that F is strictly decreasing as
we move C away from p. We can extend C (keeping F |C strictly
monotonic) until it reaches a point q of ∂M. We may choose C so that q
is neither a local maximum nor a local minimum of F |∂M.
� Now cut M along C to get M ′. Note that neither of the two points
in ∂M ′ corresponding to p is a local minimum or a local maximum of
F |∂M ′. On the other hand, one of the two points, call it q̃, corresponding
to q is a local minimum of F |M ′.
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Proof of sharper Rado’s estimate

Thus
n(F |M ′) = n(F ) (12)

(because we lost the local minimum p of F |∂M but we also gained the
local minimum q̃ of F |∂M ′) and

σ(F |M ′) = σ(F )− 1 (13)

(because we lost one σ-type point, namely p, and we did not gain any.)
Also

N(F |M ′) = N(F ),

χ(M ′) = χ(M) + 1.
(14)
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Proof of sharper Rado’s estimate

By (12), (13), (14), and induction,

N(F ) + σ(F ) = N(F |M ′) + σ(F |M ′) + 1

≤ n(F |M ′)− χ(M ′) + 1

= n(F )− χ(M).

This completes the proof in Case 1 .
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Proof of sharper Rado’s estimate

� Case 2: p is a local maximum of F |∂M but not of F . Let C be an

arc from p to a point q ∈ ∂M such that F |C is strictly increasing as we
move away from p.
We choose C so that q is not a critical point of F |∂M.
� As in Case 1, n(F |M ′) = n(F ) (though the reason is slightly different:
in this case, none of the points of C are local minima of F |∂M, and none
of the corresponding points in M ′ are local minima of F |∂M ′.)
Also, as in Case 1, σ(F |M ′) = σ(F )− 1. The rest of the proof is exactly
as in Case 1.

Q.E.D.
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Rado type functions over non-compact surfaces
In some situations, the Rado-type function F is defined only on a subset of
a surface M, and that subset may not be compact. With some mild
addition hypotheses, the following theorem allows us to estimate the
number of critical points of F .

Theorem

Suppose M is a 2-manifold with boundary and that {F ≤ r} is compact
for every r . Suppose that:

1 F |∂M has only finitely many local minima.

2 H1(M,Z2) is finite.

3 Outside of a compact subset J of ∂M, M is a smooth manifold with
boundary, F is smooth on M \ J, and F |∂M has no critical points in
(∂M) \ J.

Then
N(F ) ≤ n(F )− σ(F )− χ(M).
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Proof.

Let r > max(F |J) and let

Mr = M ∩ {F ≤ r}.

Note that

n(F |Mr ) = n(F ),

σ(F |Mr ) = σ(F ).

(The components of M ∩ {F = r} are local maxima of F |Mr and hence do
not get counted in n(F |Mr ) or σ(F |Mr ).)
Recall that di (Σ) denotes the dimension of Hi (Σ,Z2).
Then

N(F |Mr ) ≤ n(F |Mr )− σ(F |Mr )− χ(Mr )

= n(F )− σ(F )− χ(Mr ).
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Proof.

Since χ(Mr ) is the alternative sum of di (Mr ) := dimHi (Mr ,Z2),

N(F |Mr ) ≤ n(F )− σ(F ) + d1(Mr ).

Now d1(Mr ) ≤ d1(M) since H1(Mr ,Z2) injects into H1(M,Z2). Thus

N(F |Mr ) ≤ n(F )− σ(F ) + d1(M).

Letting r →∞ shows that N(F |Mr ) is finite. Now choose r greater than
max(F |J) and greater than all the critical values of F . Then
N(F ) = N(F |Mr ). Since DF and D(F |∂M) do not vanish outside of Mr ,
M is homotopy equivalent to Mr and thus χ(Mr ) = χ(M). Thus

N(F ) ≤ n(F )− σ(F )− χ(M).

�

Francisco Mart́ın (Granada) Morse-Radó theory May 3-12, 2022. 42 / 71



The Smooth Case

Here we show that in many situations, equality holds:

Theorem (Smooth I)

Suppose M is a smooth, compact surface-with-boundary, that F is a
smooth Rado function, that F |∂M is a Morse function, and that DF never
vanishes on ∂M.
Then

N(F ) = c0(F )− c1(F )− χ(M). (15)

Recall that:
� c0(F ) is the number of local minima of F |∂M that are also local
minima of F , and
� c1(F ) is the number of local maxima of F |∂M that are not local
maxima of F |M.
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The smooth case

Theorem (Smooth II)

Suppose a < b are regular values of F |M and of F |∂M and let

M[a, b] = M ∩ {a ≤ F ≤ b},
M[a] = M ∩ {F = a}.

Let ci (M[a, b]) be the number of ci -type points of M that lie in a ≤ F ≤ b
(or, equivalently, that lie in a < F < b since a and b are regular values of
F |∂M.) Then

N(F |M[a, b]) = c0(M[a, b])− c1(M[a, b])− χ(M[a, b]) + χ(M[a]). (16)

Furthermore, for (16) to hold, M need not be compact; it suffices for
M[a, b] to be compact.
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Proof of Smooth II

It suffices to prove Smooth II, since if M is compact, then (15) follows by
letting a < minF and maxF < b.

Claim

The formula (16) holds when M is compact and F has no critical points.
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Proof of claim.

The result is standard elementary Morse Theory. When b > a is close to a,
then there are no critical points of F |∂M in F−1[a, b], so M[a, b] is
homeomorphic to M[a]× [a, b], and therefore

χ(M[a, b]) = χ(M[a]).

Also, c0(F |M[a, b]) = c1(F |M[a, b]) = 0. Thus (16) holds when b > a is
close to a.
As we increase b, the Euler characteristic of M[a, b] increases by 1 each
time we pass one of the c0-type critical points (a new connected
component is created) and it decreases by 1 each time we pass one of the
c1-type critical points. This completes the proof of Claim 1. �
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Proof of Smooth II

Note that whether or not M is compact, we can find a compact region
M∗ ⊂ M with smooth boundary such that M∗[a, b] = M[a, b], such that
M∗ \M[a, b] contains no critical points of F , and such that F |∂M∗ is a
Morse Function. None of the terms in (16) change if we replace M by M∗.
Thus it suffices to prove (16) assuming that M is compact and that all the
critical points of M lie in M[a, b].
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Proof of Smooth II

We prove (16) by induction on the number of critical points of F .
If F has no critical points, then the formula holds by Claim 1.
Now suppose there is a critical point p of F . Since a and b are regular
values, p is in the interior of M[a, b]. In suitable local coordinates,

F (r , θ) = F (p) + rn sin n θ + o(rn)

in a neighborhood of the point, where n − 1 is the multiplicity of the
critical point.
Now let M ′ be obtained from M by removing a very small open disk
{r < ε} about p. We choose ε small enough that the closure of the disk is
contained in the interior of M[a, b].
Thus

χ(M ′[a, b]) = χ(M[a, b])− 1.

Let Γ be the boundary of that disk.
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Proof of Smooth II
Then F |Γ is a Morse function with n local maxima and n local minima.
None are critical points of F |M. The local minima of F |Γ are not local
minima of F |M ′, and the local maxima of F |Γ are not local maxima of
F |M ′. Thus

c0(F |M ′[a, b]) = c0(F |M[a, b]),

c1(F |M ′[a, b]) = c1(M[a, b]) + n.

By induction, the counting formula (15) is true for M ′[a, b]. Thus

N(F |M[a, b]) = N(F |M ′[a, b]) + (n − 1)

= c0(F |M ′[a, b])− c1(F |M ′[a, b])

− χ(M ′[a, b]) + χ(M ′[a]) + (n − 1)

= c0(F |M[a, b])− (c1(F |M[a, b]) + n)

− (χ(M[a, b]])− 1) + χ(M[a]) + (n − 1)

= c0(F |M[a, b])− c1(F |M[a, b])− χ(M[a, b]) + χ(M[a]).
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Applications
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Definition

We say that M ⊂ R3 is a translator with velocity v if

M 7→ M + t v

is a mean curvature flow.

Remark

This is equivalent to say
~H = v⊥.

Up to a rigid motion and a homothety we can assume that v = (0, 0,−1).
Then the translator equation has the form

~H = (0, 0,−1)⊥.
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Translators as minimal surfaces

In 1994, T. Ilmanen observed that M is a translator iff M is minimal with
respect the metric

gij := e−zδij .

This allows us to use:

1 compactness theorems,

2 curvature estimates,

3 maximum principles,

4 monotonicity,

for g -minimal surfaces. Moreover, reflection in vertical planes and
180o-rotation about vertical lines are isometries of g . Therefore, we can
use Schwarz reflection and Alexandrov method of moving planes in
our context.
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Translating graphs

Figure: Some examples of complete graphical translators.
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Theorem (Classification Theorem, Hoffman-Ilmanen-M-White)

For every w > π, there exists (up to translation) a unique complete
translator u : R× (0,w)→ R. for which the Gauss curvature is everywhere
> 0. The function u is symmetric with respect to (x , y) 7→ (−x , y) and
(x , y) 7→ (x ,w − y) and thus attains its maximum at (0,w/2). Up to
isometries of R2 and vertical translation, the only other complete
translating graphs are the tilted grim reapers and the bowl soliton, a
strictly convex, rotationally symmetric graph of an entire function.

In particular (as Spruck and Xiao had already shown), there are no
complete graphical translators defined over strips of width less than π.
Moreover the grim reaper surface is the only example with width π.
The positively curved translator in the Classification Theorem is called a
∆-wing.
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Definition

For α ∈ (0, π), w ∈ (0,∞), and 0 < L ≤ ∞, let P(α,w , L) be the set of
points (x , y) in the strip R× (0,w) such that

y

tanα
< x < L +

y

tanα
.

The lower-left corner of the region is at the origin and the interior angle at
that corner is α.
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Classical Scherk’s surfaces are obtained by solving this boundary problem:

(>)



u : P = P(α,w , L)→ R,

Div

(
∇u√

1+|∇u|2

)
= 0,

u = −∞ on the horizontal sides of P,

u = +∞ on the nonhorizontal sides of P
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We are interested in solving this boundary problem:

(>>)



u : P = P(α,w , L)→ R,

Div

(
∇u√

1+|∇u|2

)
= − 1√

1+|∇u|2
.

u = −∞ on the horizontal sides of P,

u = +∞ on the nonhorizontal sides of P
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Scherk traslators

Scherk translators
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Scherk traslators

Theorem

For every 0 < α < π and 0 < w < π there exists a unique
L = L(α,w) > 0 with the following property: there is a smooth
surface-with-boundary D = Dα,w such that:

• D is a translator and D − ∂D is the graph of a solution of (>>),

• Given (α,w , L(α,w)), the surface D is unique up to vertical
translations,

• If w ≥ π and 0 < L <∞, the problem (>>) has no solutions.
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Scherk traslators

Remark

� Since P(π − α,w , L) is the image of P(α,w , L) under reflection in the
line x = L/2, it follows that L(α,w) = L(π − α,w) and that Dπ−α,w is
the image of Dα,w under reflection in the plane x = L(α,w)/2, followed
by a vertical translation.
� Dα,w has negative Gauss curvature everywhere,
� the Gauss map is a diffeomorphism from Dα,w onto

S2+ \ Q

where S2+ is the closed upper hemisphere and where Q is the set
consisting of the four unit vectors in the equator ∂S2+ that are
perpendicular to the edges of the parallelogram P(α,w , L(α,w)) over
which Dα,w is a graph.
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Scherk traslators

Proof of Existence

From now on, we are going to fix 0 < w < π and 0 < α < π.

We consider the polygonal Jordan curve Γ in R3
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Scherk traslators

We can solve the corresponding Plateau problem associated to Γ (in R3

endowed with Ilmanen’s metric) and so we get a minimal disk that we are
going to denote D(L, h).
It has the following properties:

1 D(L, h) is a graph over the plane z = 0.

2 D(L, h) has the same symmetry as Γ.
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Scherk traslators

For a fixed height h, we have that:

(i) As L→ 0, the limit of D(w , L, h) is the ”U-shaped” curve described
by Γ, as L→ 0.

(ii) As L→∞, the limit of D(w , L, h) is the part of the standard grim
reaper cylinder which is a graph over the strip R× (0,w).
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Scherk traslators
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Scherk traslators

This means that (for h sufficiently large) it is possible to find
L(h) ∈ (0,+∞), such that the height of the saddle point (which is at the
intersection of the symmetry line) is precisely h/2. Up to a translation in
space we can assume that the saddle point is placed in the origin (0, 0, 0).

Francisco Mart́ın (Granada) Morse-Radó theory May 3-12, 2022. 65 / 71



Scherk traslators

Now, we would like to take limit of these family of disks
{D(L(h), h) : h > 0}, as the height h→∞.

Claim

The length L(h) is bounded, as h→∞.

Again we proceed by contradiction. Assume that lim sup L(h) = +∞.
Then we have a sequence {hi} ↗ +∞ such that {L(hi )} ↗ +∞.
We consider M the sub-sequential limit of D(L(hi ), hi ). M is a complete
translator which is a graph over the strip R× (−w/2,w/2) and w < π,
which is impossible (classification theorem).
This contradiction proves that L(h) is bounded.
Then, given a sequence {hi} ↗ +∞ so that {L(hi )} ↗ L, the limit
L < +∞. The limit of the sequence D(L(hi ), hi ) is the translator that we
are looking for.
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Scherk traslators

Proof of uniqueness

First step

Let P be the interior of a parallelogram in R2 with two sides parallel to the
x-axis. Suppose

u, v : P → R

are translators that have boundary values −∞ on the horizontal sides of P
and +∞ on the other sides. Then u − v is constant.

If ξ is a vector in R2, let
uξ : Pξ → R

be the result of translating u : P → R by ξ, and let

φξ : P ∩ Pξ → R,
φξ = uξ − v .
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Scherk traslators

Suppose contrary to the theorem that u − v is not constant. Then there is
a point p where Du(p) 6= Dv(p). We know that the image of the Gauss
map of the graph of u is the entire upper hemisphere.
� Equivalently, Du(·) takes every possible value. Thus there is a q ∈ P
such that Du(q) = Dv(p). Let ξ0 = p − q. Then p is a critical point of
φξ0 .
� We claim that it is an isolated critical point. For otherwise φξ0 would
be constant near p and therefore (by unique continuation) constant
throughout P ∩ Pξ0 , which is impossible. (Note for example that φξ0 is
+∞ on some edges of P ∩ Pξ0 and −∞ on other edges.)
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Scherk traslators

� It follows (Morse theory) that for every ξ sufficiently close to ξ0, φξ
has a critical point. In particular, there is such a ξ for which Pξ is in
general position with respect to P.

� However, for such a ξ, φξ cannot have a critical point, a contradiction.
It cannot have a critical point because φξ is +∞ on two adjacent sides of
its parallelogram domain P ∩ Pξ and −∞ on the other two sides.

(Note that P contains exactly one vertex of Pξ, Pξ contains exactly one
vertex of P, and at each of the two points where an edge of P intersects
an edge of Pξ, one of the functions u and uξ is +∞ and the other is −∞.)
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Scherk traslators

Second step

Suppose for i = 1, 2 that

ui : P(α,wi , Li )→ R

is a graphical translator such that ui has boundary value −∞ on the
horizontal edges of its domain and +∞ on the nonhorizontal edges.
Suppose also that w1 ≤ w2 and that L1 ≥ L2. Then w1 = w2, L1 = L2,
and u1 − u2 is constant.

� The proof is almost identical to the proof of Step 1.
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Scherk traslators

Non-existence of Scherk translators for w ≥ π.

Proposition (Non-existence)

Let w ≥ π and L <∞. Then there is no translator

u : P = P(α,w , L)→ R

with boundary values −∞ on the horizontal sides and +∞ on the
nonhorizontal sides.
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